要素	項目	条件等		単位	現状	目標値		評価法		備考
						2030 (Early Stage)	2040 (Logically Max.)	ツール	手法	. И⊞*⊃
触媒 (層)	活性 @0.9V [A/cm2] (MEA)			A/cm2	0.003 (300A/g相当)	0.02~0.04 (600~1200A/g相当)	24.1 (72x10 ⁴ A/g相当)	I RIDE	Ⅲ-2 触媒活性・耐久性評価方法(ハーフセル) Ⅲ-2-1 ORR活性評価方法	
								1711.	Ⅲ-3 MEA評価方法 Ⅲ-3-2 ORR活性評価方法	
	酸素拡散抵抗			sec/m	10~20	2.7	2.7	1	限界電流密度法	FCCJにて議論中の案あり。 今後検証し、評価法を決めて行く。
	プロトン輸送抵抗(追加)				-	-	_	1	EIS (Electrochemical Impedance Spectroscopy)	\uparrow
	耐久性	起動停止			TBD (~1000@ TEC10E50E)	TBD	TBD	RDE等		Final Target として60000サイクル(ECSA低下率が50%以下)
	1103/	電位変動			TBD (∼10000@ TEC10E50E)	TBD	TBD	セル	= /= /	Final Target として40万cycle(ECSA低下率が 50%以下)
電解質膜	プロトン 輸送抵抗	@70℃	RH100	mΩ•cm²	7.1	3.6	-		Ⅲ-1 電解質膜材料物性・耐久性評価方法 Ⅲ-1-1 プロトン伝導度測定方法	
			RH30		55~100	50	ı	面直:MEA	水素ポンプ法	FCCJにて議論中の案あり。 今後検証し、評価法を決めて行く。
		@150℃	RH30 (≒RH0)			-	5 5	未定	←	高温下での評価法については今後検討予定。
		水素		cm³/(cm ²·s·kPa)	(参考:90℃) 2.28*10 ⁻⁶	1*10 ⁻⁷ 以下	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ⅲ-1 電解質膜材料物性・耐久性評価方法 Ⅲ-1-2 ガス透過性測定方法(水素/酸素)	
	ガス透過性	酸素			_	(1-9)*10 ⁻⁹ 以下	ı	1	\uparrow	
		水蒸気		g/(cm2· s·kPa)	-	_	-	·	Ⅲ-1-3 水蒸気透過性測定方法	
		0 C V			ND	ND	ND		Ⅲ-3-1 高電位(OCV)保持試験方法	
	耐久性	Dry/Wet			>10000	ND	ND	1	(湿度サイクル試験) 2/2	Final Target として、>20000回(クロスオー バー電流の増加が初期の10倍になるまでの時間)
拡散層	ガス拡散抵抗	アノード(水素)		sec/m	3	0.875	0.875	セル	限界電流密度法	FCCJにて議論中の案あり。 今後検証し、評価法を決めて行く。
		カソード(酸素)			43	14	14	1	↑	\uparrow
		アノード カソード		Gpa/m	140~175	_	ı	GDL単体	応力-歪測定	
	, ,				112~175	_	_			1
	電気抵	電気抵抗(貫層方向)			5~10	1.5~2.5	1.5~2.5	1	加圧下での電気抵抗測定	↑
	熱抵抗 (貫層方向)			K cm2 /W	5~6	0.5~1.5	0.5~1.5	1	例.ISO 22007-2ホットディスク式 熱伝導度測定法	\uparrow

注:1.備考に示す通り、現在FCCJにて議論中の案がある。ただし、今後検証をし評価方法を決めていく必要があり、場合によっては今後変更することもある。

^{2.} 各要素の目標値は同時に達成することを目指すべき。

^{3.} 内は、固体高分子形燃料電池の目標・研究開発課題と評価方法の提案(平成23年1月)の項目を指す。